Structure-Activity Relationships of the Melanocortin Tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the Mouse Melanocortin Receptors: Part 2 Modifications at the Phe Position

J erry Ryan Holder, Rayna M. Bauzo, Zhimin Xiang, and Carrie Haskell-Luevano*
University of Florida, Department of Medicinal Chemistry, P.O. Box 100485, Gainesville, Florida 32610-0485

Received November 16, 2001

Abstract

The melanocortin pathway is an important participant in skin pigmentation, steroidogenesis, obesity, energy homeostasis and exocrine gland function. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as α-melanocyte stimulation hormone ($\alpha-\mathrm{MSH}$). The mel anocortin agonists contain the putative message sequence "His-Phe-Arg-Trp," and it has been well-documented that inversion of chirality of the Phe to DPhe results in a dramatic increase in melanocortin receptor potency. Herein, we report a tetrapeptide library, based upon the template Ac-His-DPhe-Arg-Trp- NH_{2}, consisting of 26 members that have been modified at the DPhe ${ }^{7}$ position ($\alpha-\mathrm{MSH}$ numbering) and pharmacologi cally characterized for agonist and antagonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. The most notable results of this study include the identification of the tetrapeptide Ac-His-(pl)DPhe-Arg-Trp-NH ${ }_{2}$ that is a full nanomolar agonist at the mMC1 and mMC5 receptors, a mMC3R partial agonist with potent antagonist activity $\left(\mathrm{pA}_{2}=7.25, \mathrm{~K}_{\mathrm{i}}=56 \mathrm{nM}\right)$ and, but unexpectedly, is a potent agonist at the mMC4R (EC $\mathrm{E}_{50}=25$ nM). This ligand possesses novel melanocortin receptor pharmacology, as compared to previously reported peptides, and is potentially useful for in vivo studies to differentiate MC3R vs MC4R physiological roles in animal models, such as primates, where "knockout" animals are not viable options. The DNal(2') substitution for DPhe resulted in a mMC3R partial agonist with antagonist activity ($\left.\mathrm{pA}_{2}=6.5, \mathrm{~K}_{\mathrm{i}}=295 \mathrm{nM}\right)$ and a mMC4R $\left(\mathrm{pA}_{2}=7.8, \mathrm{~K}_{\mathrm{i}}=17 \mathrm{nM}\right)$ antagonist possessing 60- and 425 -fold decreased potency, respectively, as compared with SHU 9119 at these receptors. Examination of this DNal (2')-containing tetrapeptide at the F254S and F259S mutant mMC4Rs resulted in agonist activity of this mMC4R tetrapeptide antagonist, similar to that observed for the SHU9119 peptide, supporting our previously proposed hypothesis that the Phe 254 and 259 transmembrane six receptor residues are important for differentiating melanocortin sequence-based MC4R antagonists vs the agouti-related protein (AGRP) sequencebased antagonists.

Introduction

The mel anocortin receptors belong to the superfami ly of seven transmembrane (TM)-spanning G-proteincoupled receptors (GPCRs) and stimulate the adenosine cydic $3^{\prime}, 5^{\prime}$-phosphate (cAMP) signal transduction pathway. ${ }^{1}$ The endogenous agonist ligands for these melanocortin receptors are derived by posttranslational cleavage of the pro-opiomelanocortin (POMC) gene transcript, which upon differential processing results in the generation of the α-, β-, and γ-melanocyte-stimulating hormones (MSH) and adrenocorticotropin (ACTH). All of these melanocortin peptide agonists contain a core His-Phe-Arg-Trp tetrapeptide sequence that has been attributed to the ligand selectivity and stimulation of the melanocortin receptors. ${ }^{2-4}$ The melanocortin receptor family also has two endogenous antagonists, agouti ${ }^{5}$ and the agouti-related protein (AGRP), ${ }^{6,7}$ which are the only known naturally occurring antagonists of GPCRs discovered to date. The centrally located melanocortin-3 and -4 receptors (MC3R, MC4R) have been identified in knockout mice to be involved in feeding behavior,

[^0]obesity, metabolism, and energy homeostasis. ${ }^{8-10}$ The peripheral melanocortin-1 receptor (MC1R) is expressed in the skin and is involved in skin pigmentation and animal coat col oration. ${ }^{11-13}$ The melanocortin- 5 receptor (MC5R) is expressed in a variety of peripheral tissues and has been deleted from the mouse genome and identified as playing a role in exocrine gland function. ${ }^{14}$
The Phe side chain at the seven position ($\alpha-$ MSH numbering) has been modified and resulted in the discovery of antagonists for the central MC3 and MC4 receptors. ${ }^{15}$ The $\mathrm{DNal}\left(2^{\prime}\right)$ and para iodine (pl)DPhe substitutions of the Phe amino acid in the MTII cyclic peptidetemplate(Ac-N le-c[Asp-His-DPhe-Arg-Trp-Lys]NH_{2}) resulted in the MC3R and MC4R partial agonists and antagonists SHU 9119 and SHU8914, respectively. ${ }^{15}$ The (pl)DPhe substitution of the DPhe amino acid in the NDP-MSH linear peptide template (Ac-Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) re sulted in the SHU 9005 partial agonist and antagonist activity at the MC3R and MC4R. ${ }^{16}$ The MTII (agonist) and SHU 9119 (antagonist) ligands were further utilized in rodent feeding studies to demonstrate that the central melanocortin pathway could modify feeding behavior by increasing food intake upon antagonist administration

Ala

Dip

Bip

3 Pal

4Pal

Atc

Figure 1. Structures of the amino acids used to replace DPhe in the peptide template Ac-His-Xaa-Arg-Trp- NH_{2}.
and decreasing food intake upon agonist administration into the brain. ${ }^{17}$ Subsequent studies substituting the DNal(2') amino acid into various melanocortin agonist peptide templates at the Phe position resulted in MC3 and/or MC4 receptor antagonists. ${ }^{18-23}$ Computer GPCR homol ogy molecular modeling of the MC1R ${ }^{24}$ and receptor mutagenesis studies of the peripheral MC1R ${ }^{25}$ and the central MC4R ${ }^{16,26}$ resulted in the identification of the melanocortin ligand DPhe residue as putatively interacting with a hydrophobic receptor pocket consisting of several aromatic receptor side chains. ${ }^{27}$ The study presented herein utilizes the tetrapeptide template Ac-His-Xaa-Arg-Trp-NH2, where Xaa is substituted with natural, unnatural, and aromatic amino acids (Figure 1) to examine the melanocortin ligand side chain properties important for melanocortin receptor selectivity, potency, structure-activity relationship (SAR) trends, and differentiation of agonist vs antagonist activities at the mouse MC1, MC3, MC4, and MC5 receptors.

Results

Table 1 summarizes the pharmacol ogy at the mouse melanocortin receptors $\mathrm{mMC1R}, \mathrm{mMC3R}, \mathrm{mMC} 4 \mathrm{R}$, and mMC5R of the 26 tetrapeptides modified at the Phe seven position ($\alpha-\mathrm{MSH}$ numbering) of the tetrapeptide template Ac-His-Xaa-Arg-Trp- NH_{2} prepared in this study. The compounds that did not show agonist activity, > 100000 nM EC 50 values in Table 1, were tested for antagonism at up to $10 \mu \mathrm{M}$ concentrations but did not possess antagonistic pharmacol ogical profiles (data not shown).
Tetrapeptide 1, Ac-His-DPhe-Arg-Trp- NH_{2}, is the lead peptide for this study and has been previously reported at the mouse melanocortin receptors ${ }^{28}$ to possess 20 , 156, 17, and 4 nM agonist activity at the mMC1R, mMC3R, mMC4R, and mMC5R, reported herein. The
(pl)DPhe-containing tetrapeptide $\mathbf{3}$ maintained equipotency at the mMC1R, mMC4R, and mMC5R (within the inherent 3-fold experimental error) with DPhe ${ }^{7}(\mathbf{1})$ but was a partial agonist possessing potent antagonist activity ($\mathrm{pA}_{2}=7.25, \mathrm{~K}_{\mathrm{i}}=56 \mathrm{nM}$) at the mMC3R (Figure 2). The homoPhe ${ }^{7}$ tetrapeptide 4 resulted in 1650 - and 2980 -fold decreased potencies at the mMC1R and mMC5R, respectively, as compared with $\mathbf{1}$, but was not able to stimulate the mMC3 and mMC4 receptors at up to $100 \mu \mathrm{M}$ concentrations. The homoDPhe ${ }^{7}$ tetrapeptide 5 resulted in only 310-, 645-, and 700-fold decreased potency at the mMC1R, mMC4R, and mMC5R, respectively, as compared with $\mathbf{1}$ and similarly to the ho-moPhe-containing tetrapeptide 4 was unable to stimulate the mMC3R at up to $100 \mu \mathrm{M}$ concentrations. The Phg^{7} tetrapeptide 10, which contains one less CH_{2} in the side chain length than Phe, resulted in 731-, 282-, $2360-$, and 1010 -fold decreased potency as compared with the Phe^{7} tetrapeptide $\mathbf{1}$ at the $\mathrm{mMC1R}, \mathrm{mMC} 3 \mathrm{R}$, mMC4R, and mMC5R, respectively. Tetrapeptide 11 (DPhg ${ }^{7}$) resulted in 841-fold decreased mMC1R potency as compared with $\mathbf{1}$ and possessed only slight agonist activity (at $100 \mu \mathrm{M}$) at the mMC5R and was unable to stimulate either the mMC3 or the mMC4 receptors. The $\mathrm{NaI}\left(1^{\prime}\right)^{7}$-containing tetrapeptide $\mathbf{1 2}$ possessed 756 -fold decreased potency at the mMC1R and 2830 -fold decreased mMC5R potency, as compared with DPhe ${ }^{7}(\mathbf{1})$, and did not stimulate the mMC3R or mMC4R. However, the $\mathrm{DNal}\left(1^{\prime}\right)^{7}$ tetrapeptide $\mathbf{1 3}$ resulted in slight and nearly equal 13 - 26 -fold decreased potency, as compared with 1, at the $\mathrm{mMC1}-5$ receptors. Tetrapeptide 14, containing $\mathrm{Nal}\left(2^{\prime}\right)$ at the Phe position, resulted in an equi potent decreased potency at the mMC1R (1100-fold) and mMC5R (1870-fold) as compared with $\mathbf{1}$ and was also unable to stimulate the mMC 3 and mMC 4 receptors. The tetrapeptide Ac-His-DNal(2')-Arg-Trp-NH2 (15) resulted in 8 - and 9 -fold decreased agonist potency at the mMC1R and mMC5R, respectively, as compared with $\mathbf{1}$ and was a partial agonist with antagonist activity at the mMC3R ($\mathrm{pA}_{2}=6.5, \mathrm{~K}_{\mathrm{i}}=295 \mathrm{nM}$) and a mMC4R antagonist ($\mathrm{pA}_{2}=7.78, \mathrm{~K}_{\mathrm{i}}=17 \mathrm{nM}$); see figure in the Supporting Information. The Tic^{7}-containing tetrapeptide $\mathbf{1 8}$ resulted in 2670-fold decreased mMC1R potency and 5380 -fold decreased mMC5R potency, as compared with $\mathbf{1}$, and was unable to stimulate the mMC3 and mMC4 receptors. Tetrapeptide 19 (DTic^{7}) possessed 2030-fold decreased mMC1R potency as compared with the DPhe ${ }^{7}$ tetrapeptide $\mathbf{1}$ and did not stimulate the mMC3-5 receptors at up to $100 \mu \mathrm{M}$ concentrations. Tetrapeptide 20, containing the Bip amino acid in the Phe position, resulted in a 527 -fold decreased mMC1R potency and 1390 -fold decreased mMC5R potency, as compared with 1, and possessed slight agonist activity at the mMC4R ($100 \mu \mathrm{M}$) but was unable to stimulate the mMC3R. Interestingly, DBip ${ }^{7}$ (21) was equipotent with $\mathbf{1}$ at the mMC1R, mMC4R, and mMC5R (within experimental error) but was 13 -fold less potent at the mMC3R. Incorporation of the racemic Atc amino acid intothe tetrapeptide template resulted in the separation of two separate peaks by reversed-phase high-performance liquid chromatography (RP-HPLC); they are designated as peptides $\mathbf{2 5}$ and $\mathbf{2 6}$. Tetrapeptide $\mathbf{2 5}$, the first Atc-containing peptide eluted by RP-HPLC, re sulted in equal 63 -fold decreased potency at both the
Table 1. Functional Activity of the DPhe${ }^{7}$-M odified Tetrapeptides at the Mouse Melanocortin Receptors

peptide	structure	mMC1R		mMC3R		mMC4R		mMC5R	
		$E C_{50}(\mathrm{nM})$	fold difference	$E C_{50}(\mathrm{nM})$	fold difference	$E C_{50}(\mathrm{nM})$	fold difference	$\mathrm{EC}_{50}(\mathrm{nM})$	fold difference
$\alpha-\mathrm{MSH}$	Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2	0.55 ± 0.09		0.79 ± 0.14		5.37 ± 0.62		0.44 ± 0.09	
NDP-MSH	Ac-Ser-Tyr-Ser-NIe-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2	0.038 ± 0.012		0.098 ± 0.013		0.21 ± 0.03		0.071 ± 0.012	
MTII	Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2	0.020 ± 0.003		0.16 ± 0.03		0.087 ± 0.008		0.16 ± 0.03	
$\alpha-\mathrm{MSH}$ (7-9)	Ac-His-Phe-Arg-Trp- NH_{2}	$7690 \pm 3590^{*}$		$4370 \pm 535^{*}$		$2,110 \pm 243^{*}$		$103 \pm 28 *$	
1	Ac-His-DPhe-Arg-Trp- NH_{2}	20.1 ± 0.57	1.0	156 ± 9.2	1.0	17.2 ± 2.78	1.0	3.96 ± 0.94	1.0
2	Ac-His-Ala-Arg-Trp-NH2	30000 ± 6100	1490	> 100000		>100 000		> 100000	
3	Ac-His-(pl)DPhe-Arg-Trp- NH_{2}	60.4 ± 13.4	3	partial agonist $\mathbf{p A}_{\mathbf{2}}=7.25 \pm 0.18$	antagonist	25.0 ± 9.78	1	1.60 ± 0.35	-2
4	Ac-His-homoPhe-Arg-Trp- NH_{2}	33100 ± 8300	1650	> 100000		> 100000		11800 ± 4700	2980
5	Ac-His-homoDPhe-Arg-Trp-N H_{2}	6250 ± 2000	310	> 100000		11100 ± 2000	645	2800 ± 780	700
6	Ac-His-Tyr-Arg-Trp-NH2	61400 ± 17100	3050	> 100000		>100 000		32700 ± 9400	8260
7	Ac-His-DTyr-Arg-Trp-NH2	3200 ± 1300	159	34000 ± 5000	218	2400 ± 690	140	631 ± 97	159
8	Ac-His-Trp-Arg-Trp-NH2	33400 ± 10700	1660	> 100000		34300 ± 7900	1990	18400 ± 6800	4650
9	Ac-His-DTrp-Arg-Trp-NH2	25100 ± 15000	1250	> 100000		> 100000		6950 ± 1780	1760
10	Ac-His-Phg-Arg-Trp- NH_{2}	14700 ± 2000	731	44000 ± 13700	282	40500 ± 9300	2360	4000 ± 1300	1010
11	Ac-His-DPhg-Arg-Trp- NH_{2}	16900 ± 3200	841	> 100000		> 100000		slight agonist at $100 \mu \mathrm{M}$	
12	Ac-His-Nal(1')-Arg-Trp- NH_{2}	15200 ± 3100	756	> 100000		> 100000		11200 ± 2300	2830
13	Ac-His-DNal(1')-Arg-Trp-NH2	356 ± 64	18	4100 ± 1000	26	303 ± 65	18	51.4 ± 4.07	13
14	Ac-His-Nal(2')-Arg-Trp-NH2	22000 ± 5600	1100	>100 000		>100 000		7400 ± 1800	1870
15	Ac-His-DNal(2)-Arg-Trp-NH2	167 ± 41	8	partial agonist $\mathbf{p A}_{\mathbf{2}}=6.53 \pm 0.09$	antagonist	$\mathbf{p A}_{\mathbf{2}}=7.78 \pm 0.18$	antagonist	34.7 ± 6.75	9
16	Ac-His-Dip-Arg-Trp-NH2	19000 ± 7100	945	> 100000		> 100000		> 100000	
17	Ac-His-DDip-Arg-Trp- NH_{2}	1500 ± 280	75	> 100000		5000 ± 750	291	4300 ± 695	1090
18	Ac-His-Tic-Arg-Trp-N H_{2}	53600 ± 13600	2670	> 100000		> 100000		21300 ± 9700	5380
19	Ac-His-DTic-Arg-Trp-NH2	40800 ± 19900	2030	> 100000		> 100000		> 100000	
20	Ac-His-Bip-Arg-Trp-NH2	10600 ± 3700	527	> 100000		slight agonist at $100 \mu \mathrm{M}$		5500 ± 2300	1390
21	Ac-His-DBip-Arg-Trp-NH2	28.4 ± 11.4	1	2050 ± 734	13	68.4 ± 15.8	4	11.6 ± 3.92	3
22	Ac-His-His-Arg-Trp-NH2	41700 ± 19200	2080	> 100000		> 100000		41200 ± 14400	10400
23	Ac-His-3Pal-Arg-Trp-NH2	22900 ± 1200	1140	> 100000		>100000		36100 ± 9300	9100
24	Ac-His-4Pal-Arg-Trp-NH2	36700 ± 10100	1830	> 100000		24400 ± 2000	1420	9700 ± 1500	2450
25 (peak 1)	Ac-His-Atc-Arg-Trp- NH_{2}	2350 ± 930	117	9900 ± 2900	63	1780 ± 163	103	263 ± 81	66
26 (peak 2)	Ac-His-Atc-Arg-Trp-NH2	5800 ± 2070	289	7800 ± 1300	50	7130 ± 1400	415	2070 ± 657	523

[^1]

Figure 2. Illustration of the tetrapeptide $\mathbf{3}$ possessing partial agonist and antagonist pharmacology at the mouse MC3R and agonist pharmacology at the mouse MC4R. The endogenous agonist for the melanocortin receptors, $\alpha-\mathrm{MSH}$, is only 5 -fold more potent at the mMC4R than tetrapeptide 3, Ac-His-(pl)DPhe-Arg-Trp-NH2.
mMC3R and the mMC5R and equal 103-fold decreased potency at the mMC1R and mMC4R, as compared with 1. Interestingly, tetrapeptide $\mathbf{2 6}$ containing the second Atc peptide eluted resulted in 50 -fold decreased mMC3R potency, 289 -fold decreased mMC1R potency, 415-fold decreased mMC4R potency, and 523 -fold decreased mMC5R potency, as compared with the DPhe ${ }^{7}$-containing tetrapeptide 1.

Discussion

Mouse Melanocortin-1 Receptor. The peripheral skin melanocortin receptor, MC1R, is involved in human skin pigmentation ${ }^{12,29}$ and animal coat col oration. ${ }^{13}$ The lead tetrapeptide 1, Ac-His-DPhe-Arg-Trp-NH2, has been previously reported to possess 25 nM stimulatory activity at the $\mathrm{mMC1R},{ }^{28}$ an EC_{50} value of 200 nM in the dassical Rana pipiens frog skin assay (putative MC1R), ${ }^{4}$ and possesses a mMC1R $\mathrm{EC}_{50}=20 \mathrm{nM}$ reported herein. Interestingly, all of the substitutions at the DPhe position of the tetrapeptide $\mathbf{1}$ were tolerated by the mMC1R and $E C_{50}$ values and full agonism resulted (Table 1), unlike the pharmacology of these compounds at the mMC3R and mMC4R. Upon substitution of the Phe side chain with Ala, a 1500 -fold decreased potency as compared with $\mathbf{1}$ is observed at the mMC1R. Substitution at the Phe position of these tetrapeptides with homoPhe (4), Tyr (6), Trp (8), DTrp(9), $\mathrm{Nal}\left(\mathbf{2}^{\prime}\right)$ (14), Tic (18), DTiC (19), His (22), 3Pal (23), and 4 Pal (24) all resulted in approximately the same fold decreased potency as the Ala-containing tetrapeptide 2, as compared with the lead tetrapeptide 1. The most potent Phe substitution in the tetrapeptide template is the DBip amino acid (Figure 1) in tetrapeptide 21, which resulted in equipotent mMC1R activity, as compared with the lead tetrapeptide $\mathbf{1}$. Tetrapeptides possessing nanomol ar mMC1R agonist activity include the (pl) DPhe (3), $\operatorname{DNal}\left(\mathbf{2}^{\prime}\right)(\mathbf{1 5})$, and $\operatorname{DNal}\left(\mathbf{1}^{\prime}\right)(\mathbf{1 3})$ amino acid substitutions at the Phe position of tetrapeptide $\mathbf{1}$. Interestingly, SH U 8914 ($\mathrm{pl} \mathrm{DPhe}{ }^{7}$) was a potent ($\mathrm{pA}_{2}=$ 10.3) antagonist in the frog skin bioassay (putative MC1R) but was a potent agonist at both the mouse and the human MC1 receptors. ${ }^{15}$
Receptor mutagenesis and GPCR homol ogy molecular modeling studies of the MC1R identified a putative hydrophobic receptor pocket consisting of multiple Phe
receptor residues proposed to interact with the melanocortin ligand Phe amino acid. ${ }^{24,25,27}$ The tetrapeptides reported herein that possessed nanomolar agonist pharmacology (1, 3, 14, 15, and 21) consisted of a Dconfigured amino acid derivative of the benzyl side chain. These data are consistent with the receptor mutagenesis and modeling studies, suggesting that an aromatic network of interactions is formed between the melanocortin agonist DPhe amino acid and multiple Phe residues of the MC1 receptor.

Mouse Melanocortin-3 Receptor. The MC3R is expressed both peripherally and centrally and appears to be involved in metabolism and energy homeostasis. $8,9,30,31$ The lead tetrapeptide $\mathbf{1}$ has been previously reported to possess a 195 nM agonist EC_{50} at the mMC3R, ${ }^{28}$ a 1000 nM EC 50 at the hMC3R, ${ }^{32}$ and a 156 $\mathrm{nM} E C_{50}$ value reported herein. Substitution of the Phe amino acid side chain at the seven position ($\alpha-\mathrm{MSH}$ numbering) of the lead tetrapeptide by Ala, homoPhe, DhomoPhe, Tyr, Trp, DTrp, DPhg, $\operatorname{Nal}\left(1^{\prime}\right), \operatorname{Nal}\left(2^{\prime}\right), \operatorname{Dip}$, DDip, Tic, DTic, Bip, His, 3Pal, and 4Pal (Figure 1) resulted in loss of agonist activity at up to $100 \mu \mathrm{M}$ concentrations (Table 1). Replacement of DPhe with Ala at the seven position of the cydic MTII template resulted in only 19% total binding at $10 \mu \mathrm{M}$ and 2% agonist stimulation at $20 \mu \mathrm{M}$ concentrations at the human MC3R. ${ }^{33}$ Incorporation of the pl moiety onto the DPhe amino acid in tetrapeptide $\mathbf{3}$ resulted in a partial mMC R agonist with potent antagonist activity ($\mathrm{pA}_{2}=$ 7.25), which corresponds to a K_{i} value of 56 nM (Figure 2). In previous studies with the (pl)DPhe substitution in either the cyclic MTII template (SHU8914, hMC3R $\left.\mathrm{pA}_{2}=8.3, \mathrm{~K}_{\mathrm{i}}=5 \mathrm{nM}\right)^{15}$ or the linear NDP-MSH template (SHU9005, mMC3R pA 2 ca. 9.0; HaskellLuevano, C.; Hruby, V. J.; Cone, R. D. Unpublished results.), partial agonism was observed in addition to MC3R antagonistic pharmacology. Similarly to the previously reported peptides containing (pl)DP he at the seven position, when the (pl)DPhe amino acid is inserted into the tetrapeptide template 3, a compound results that possesses partial agonist activity at the mMC3R (Figure 2). The tetrapeptide Ac-His-DNal(2')-Arg-Trp- NH_{2} (15) is al so a mMC3R antagonist ($\mathrm{pA}_{2}=$ $6.53, \mathrm{~K}_{\mathrm{i}}=295 \mathrm{nM}$) that possesses slight agonist activity, less than 3, at greater than $1 \mu \mathrm{M}$ concentrations

Figure 3. Comparison of the mMC4R agonist peptides MTII, NDP-MSH, and $\mathbf{1}$ (Ac-His-DPhe-Arg-Trp-NH 2) and the mMC4R antagonist SHU9119 at the mutant F254S and F259S mMC4 receptors. The SHU 9119 peptide possesses partial agonist activity at these mutant receptors vs possessing competitive antagonist pharmacology at the wild-type mMC4R. ${ }^{15}$
(Supporting Information). This DNal(2') substitution for the Phe side chain in the cyclic MTII template resulted in the identification of the first MC3R antagonist, al beit with partial agonist activity. ${ }^{15}$ Subsequently, this DNal(2') substitution in several other cydic melanocortin templates also resulted in antagonists of the MC3 receptor. ${ }^{18-22}$ Furthermore, a study of a modified molecule based upon the His-DNal(2')-Arg-Trp peptide motif, RO27-4680, resulted in a MC3R antagonist. ${ }^{23}$ The most potent agonist tetrapeptides substituted at the Phe position reported herein include the DBip 7 (21)- and the $\mathrm{DNal}\left(1^{\prime}\right)^{7}(\mathbf{1 3})$-containing molecules that are 13 - and 26 fold less potent than the DPhe tetrapeptide $\mathbf{1}$ at the mMC3R.

Mouse Melanocortin-4 Receptor. The central MC4R has been identified as physiologically participating in food consumption ${ }^{17}$ and obesity in mice ${ }^{10}$ with several polymorphisms of the MC4R observed in obese humans. ${ }^{34-39}$ The lead tetrapeptide in this study, $\mathbf{1}$, was previously reported to possess a 10 nM agonist EC_{50} value at the mMC4R, ${ }^{28} 8^{26}$ and $47 \mathrm{nM}^{32}$ agonist $E C_{50}$ values at the hMC4R, and a potency at the mMC4R of 17 nM reported herein. Similarly to the mMC3R, substitution of the Phe benzyl side chain with a methyl group of Ala (2) resulted in a loss of a determinable EC 50 value at the mMC4R. Interestingly, when the DPhe of the linear 13 amino acid NDP-MSH peptide was replaced with a DAla, only ca. 1200-fold decreased binding and agonist potency was reported at the human MC4R. ${ }^{26}$ In a separate paper, replacement of DPhe with Ala at the seven position of the cydic MTII template resulted in only 13% total binding at $10 \mu \mathrm{M}$ and 32% agonist stimulation at $20 \mu \mathrm{M}$ concentrations at the human MC4R. ${ }^{33}$ Substitution of the Phe amino acid with homoPhe (4), Tyr (6), DTrp (9), DPhg (11), Nal(1') (12), $\mathrm{Nal}\left(2^{\prime}\right)$ (14), Dip (16), Tic (18), DTic (19), His (22), and 3Pal (23) resulted in a loss of agonist activity at up to $100 \mu \mathrm{M}$ concentrations. Tetrapeptide $\mathbf{2 0}$ containing the Bip amino acid instead of DPhe (1) possessed slight agonist activity at up to $100 \mu \mathrm{M}$ concentrations at the mMC4R but not enough agonist response to determine an $E C_{50}$ value. Substitutions of the DPhe (1) residue in the tetrapeptide template resulting in nanomolar mMC4R agonist potency include the (pl)DPhe (3), DBip (21), and $\operatorname{DNal}\left(\mathbf{1}^{\prime}\right)(\mathbf{1 3})$ amino acids. These later results suggest that substitution of the DPhe residue in
melanocortin small molecules by either the (pl)DPhe or the DBip amino acids may result in nonpeptide compounds possessing similar MC4R agonist potency as homologous compounds containing the DPhe moiety. Surprisingly, tetrapeptide 3 containing the (pl)DPhe ${ }^{7}$ amino acid resulted in a potent mMC4R agonist (EC E_{50} $=25 \mathrm{nM}$) that is only 5 -fold less potent than $\alpha-\mathrm{MSH}$ (Table 1), instead of an antagonist pharmacology like at the mMC3R (Figure 2). Previous studies incorporating a pl moiety onto the DP he at the seven position (α MSH numbering) in both the seven amino acid MTII cyclic template, SHU8914, ${ }^{15}$ and the linear 13 amino acid NDP-MSH template, SHU 9005, ${ }^{16}$ resulted in peptides possessing partial agonism and potent antagonism ($\mathrm{pA}_{2}=9.7, \mathrm{~K}_{\mathrm{i}}=0.2 \mathrm{nM}$) at the human and mouse MC4 receptors. Because the tetrapeptide (3) containing the (pl)DPhe ${ }^{7}$ residue is a potent MC4R agonist at the mouse receptor, we further examined this peptide using the human MC4R done and also observed full agonist activity with a similar nanomolar EC_{50} potency (data not shown). Thus, the agonist pharmacology for compound $\mathbf{3}$ does not appear to be species specific (human vs mouse). It is therefore interesting to speculate that differences in antagonist activity of the larger (pl)DPhe ${ }^{7}$-containing peptides vs agonist activity of the tetrapeptide reported herein may be attributed to the additional amino acids at the N and C terminus that may be modifying the secondary structure and/or topography of how these ligands may be interacting with the MC4 receptor putative binding pocket. As predicted, tetrapeptide 15, containing $\operatorname{DNal}\left(2^{\prime}\right),{ }^{7}$ resulted in a mMC4R antagonist ($\mathrm{pA}_{2}=7.8, \mathrm{~K}_{\mathrm{i}}=17 \mathrm{nM}$, Supporting Information). In the linear tetrapeptide template used in this study, a 427 -fold decreased potency results, as compared with the more potent cydic SHU $9119 \mathrm{mMC4R}$ antagonist Ac-NIe-c[Asp-His-DNal(2')-Arg-Trp-Lys]$\mathrm{NH}_{2}{ }^{.{ }^{15,16}}$
Receptor mutagenesis studies of the mouse MC4R identified mutations in the putative TM6 domain as converting the SHU9119 and SHU 9005 MC4R antagonists into agonists. ${ }^{16}$ Interestingly, these two mutant receptors, F254S mMC4R and F259S mMC4R, did not result in converting the endogenous antagonist hAGRP-(83-132) into a ligand possessing agonist activity as the SHU9119 and SHU9005 ligands were, nor did the hAGRP(109-118) decapeptide result in any agonist

Figure 4. Illustration of the tetrapeptide 15, Ac-His-DNal(2')-Arg-Trp-NH2, pharmacology at the mutant F254S and F259S mouse MC4 receptors. Similarly to the SHU 9119 peptide, this DNal($\left.2^{\prime}\right)^{7}$-containing tetrapeptide results in agonist pharmacology at these two mutant mMC4 receptors whereas at the wild-type mMC4R (Supporting Information), competitive antagonist pharmacology results.
activity at these mutant receptors. Figure 3 shows the agonist pharmacology of the MTII, NDP-MSH, and tetrapeptide $\mathbf{1}$ presented herein and the partial agonist activity of the SHU9119 MC4R antagonist at these F254S and F259S mutant mMC4 receptors. We have previously identified these two mutant mMC4 receptors as being able to differentiate melanocortin sequencebased antagonists (i.e., SHU9119 and SHU 9005) vs the endogenous antagonist AGRP(83-132) ligand pharmacology. To further test this hypothesis, we tested the tetrapeptide 15, Ac-H is-DNal (2')-Arg-Trp-NH ${ }_{2}$, at these F254S and F259S mutant mMC4 receptors to determine if these receptors would possess pharmacol ogy similar to the melanocortin-based antagonist SH U9119. Figure 4 summarizes the pharmacology of the $\mathrm{DNal}\left(2^{\prime}\right)$ containing tetrapeptide 15 at the F254S and F259S mMC4Rs, resulting in agonist activity of the compound 15 that is a competitive antagonist at the wild-type mMC4R (Supporting Information). These data support our previous hypothesis that the mMC4R Phe 254 and 259 residues in the putative TM6 domain interact with the melanocortin $\mathrm{DNal}\left(2^{\prime}\right)$ amino acid, which is substituted for the DPhe amino acid in the agonists. ${ }^{16}$

Mouse Melanocortin-5 Receptor. The peripheral MC5R is expressed in a variety of tissues and has been implicated as physiologically participating in the role of exocrine gland function. ${ }^{1,14,40}$ The lead tetrapeptide 1 has been previously reported to possess a 3.4 nM agonist $E C_{50}$ at the mMC5R ${ }^{28}$ and a 17% response at a $5 \mu \mathrm{M}$ concentration at the hMC5R ${ }^{32}$ and possesses a 3.9 nM EC50 at the mMC5R reported herein. Similarly to the mMC3 and mMC4 receptors, tetrapeptide $\mathbf{2}$ containing Ala instead of the DPhe amino acid at the seven position ($\alpha-$ MSH numbering) results in a loss of determinable EC_{50} value at up to $100 \mu \mathrm{M}$ concentrations at the mMC5R. Tetrapeptide 19, containing the DTic ${ }^{7}$, was the only compound in addition to 2 that lost agonist activity at up to $100 \mu \mathrm{M}$ concentrations, although 11 (DPhg) had only slight agonist activity at up to $100 \mu \mathrm{M}$ concentrations. It has been previously reported that replacement of DPhe with Ala at the seven position of the cydic MTII template resulted in only 14% total binding at $10 \mu \mathrm{M}$ and 5% agonist stimulation at $10 \mu \mathrm{M}$ concentrations at the human MC5R. ${ }^{33}$ Tetrapeptides
possessing nanomolar mMC5R agonist potencies include the (pl)DPhe (3), DTyr (7), DNal(1') (13), $\operatorname{DNal}\left(2^{\prime}\right)(15)$, DBip (21), and Atc (peak 1, 25) amino acids. These results suggest that modification of the DPhe^{7} position by the (pl)DPhe, DBip, and possibly the DNal (2') amino acids in small nonpeptidic molecules may possess similar mMC5R agonist potency at homologous compounds containing the DPhe^{7} residue. Substitution of the DPhe with the DNal(2') amino acid in a variety of melanocortin peptide templates resulted in mMC5R agonist activities ranging from nanomolar to micromolar, depending upon the template. ${ }^{18-22}$ Amino acid substitutions of the DPhe in this tetrapeptide template that resulted in significantly decreased mMC5R agonist potencies include the homoPhe, Tyr, Trp, DPhg, Nal(1^{\prime}), Tic, His, and 3Pal amino acid side chains that appear to be less-tolerated in this position at this melanocortin receptor.

Conclusions

The study presented herein has resulted in the identification of a tetrapeptide, Ac-His-(pl)DPheArg-Trp- NH_{2}, that possesses novel melanocortin receptor pharmacology in that it is a mMC3R partial agonist with antagonist acitivity ($\mathrm{pA}_{2}=7.25, \mathrm{~K}_{\mathrm{i}}=56 \mathrm{nM}$) but, unexpectedly, possess 25 nM mM C4R agonist activity. This molecule is potentially a physiologically useful compound for differentiating the MC3R vs MC4R in vivo activities in wild-type, nongenetically modified rodents and even primates where knocking out a particular receptor to study physiol ogy is more difficult and costly. Furthermore, the tetrapeptide 15 Ac -His-DNal (2^{\prime})-Arg-Trp- NH_{2}, possessing the $\mathrm{DNal}\left(2^{\prime}\right)$ amino acid that converts the MTII agonist into the SHU9119 antagonist, is a mMC3R partial agonist with agonist activity (pA_{2} $=6.5, \mathrm{~K}_{\mathrm{i}}=295 \mathrm{nM}$) and a mMC4R antagonist ($\mathrm{pA}_{2}=$ 7.8, $\mathrm{K}_{\mathrm{i}}=17 \mathrm{nM}$) and is only 60 -fold less potent at the mMC3R and 425 -fold less potent at the mMC4R, as compared with SHU9119. Thus, tetrapeptide $\mathbf{1 5}$ provides a linear template for the design of small modified peptidic ${ }^{23}$ or nonpeptidic MC4R antagonists. After tetrapeptide 15 was examined at the mutant F254S and F259S mMC4 receptors, this tetrapeptide that possessed antagonist activity at the wild-type mMC4R is converted

Table 2. Analytical Data for the Peptides Synthesized in This Studya

peptide	structure	HPLC ${ }^{\prime}$ (system 1)	HPLC ${ }^{\prime}$ (system 2)	$\begin{aligned} & M+1 \\ & (c a l c d) \end{aligned}$	mass spectral analysis ($\mathrm{M}+1$)	purity (\%)
1	Ac-His-DPhe-Arg-Trp-NH2	3.9	6.9	686.8	686.3	> 98
2	Ac-His-Ala-Arg-Trp-NH2	3.1	4.9	610.7	610.3	> 98
3	Ac-His-(pl)DPhe-Arg-Trp-NH2	5.0	8.3	812.7	812.0	> 98
4	Ac-His-homoPhe-Arg-Trp- NH_{2}	5.3	8.4	700.8	700.3	> 97
5	Ac-His-homoDPhe-Arg-Trp-NH2	4.6	7.6	700.8	700.0	> 96
6	Ac-His-Tyr-Arg-Trp- NH_{2}	3.8	6.2	702.8	702.2	> 99
7	Ac-His-DTyr-Arg-Trp-NH2	3.6	5.7	702.8	702.1	> 99
8	Ac-His-Trp-Arg-Trp- NH_{2}	4.9	7.7	725.8	725.3	> 99
9	Ac-His-DTrp-Arg-Trp-NH2	4.2	6.9	725.8	725.3	> 96
10	Ac-His-Phg-Arg-Trp- NH_{2}	4.3	6.9	672.8	672.3	> 97
11	Ac-His-DPhg-Arg-Trp-NH2	3.8	5.8	672.8	672.4	> 98
12	Ac-His-Nal(1)-Arg-Trp-NH2	5.6	9.5	736.8	737.2	> 98
13	Ac-His-DNal(1)-Arg-Trp-NH2	4.8	8.1	736.8	736.0	> 97
14	Ac-His-Nal(2')-Arg-Trp-NH2	5.6	9.4	736.8	736.4	> 98
15	Ac-His-DNal(2)-Arg-Trp-NH2	5.0	8.3	736.8	736.3	> 98
16	Ac-His-Dip-Arg-Trp-NH2	5.7	9.9	762.9	762.3	> 98
17	Ac-His-DDip-Arg-Trp-NH2	4.8	8.1	762.9	762.2	> 98
18	Ac-His-Tic-Arg-Trp-NH2	4.5	7.4	698.8	698.1	> 96
19	Ac-His-DTic-Arg-Trp-NH2	4.1	6.8	698.8	698.1	> 98
20	Ac-His-Bip-Arg-Trp-NH2	6.2	10.2	762.9	761.8	> 98
21	Ac-His-DBip-Arg-Trp-NH2	5.6	9.3	762.9	762.1	> 98
22	Ac-His-His-Arg-Trp- NH_{2}	3.1	4.7	676.7	676.3	> 99
23	Ac-His-3Pal-Arg-Trp-NH2	3.1	4.9	687.8	687.3	> 98
24	Ac-His-4Pal-Arg-Trp-NH2	3.1	4.9	687.8	687.2	> 98
25	Ac-His-Atc-Arg-Trp-NH2	4.7	7.9	712.8	712.3	> 98
26	Ac-His-Atc-Arg-Trp-NH2	4.8	8.2	712.8	712.3	> 96

${ }^{\text {a }} \mathrm{HPLC}$ K $=[($ peptide retention time - solvent retention time)/solvent retention time] in solvent system 1 (10\% acetonitrile in 0.1% trifluoroacetic acid/water and a gradient to 90% acetonitrile over 35 min) or solvent system 2 (10% methanol in 0.1% trifluoroacetic acid/water and a gradient to 90% methanol over 35 min). An analytical Vydac C18 column (Vydac 218TP104) was used with a flow rate of $1.5 \mathrm{~mL} / \mathrm{min}$. The peptide purity was determined by HPLC at a wavelength of 214λ.
to an agonist, resulting in similar pharmacology at these mutant mMC4 receptors observed of SH U9119. ${ }^{16}$ These latter data further support our hypothesis that the DNal(2') substitution of DPhe in the melanocortin peptide templates is putatively interacting with the mMC4R Phe 254 and 259 receptor residues.

Experiemental

Peptide synthesis was performed using standard Fmoc methodology ${ }^{41}$ on an automated synthesizer (Advanced ChemTech 440M OS, Louisville, KY). The amino acids F mocTyr(tBu), F moc-His(Trt), Fmoc-DPhe, F moc-Trp(Boc), F mocAla, Fmoc-Phe, F moc-phenylglycine (Phg), Fmoc-d-phenylglycine (DPhg), F moc-3-(1-naphthyl)alanine [$\mathrm{Nal}\left(1^{\prime}\right)$], F moc-3-(1-naphthyl)-d-alanine [DNal(1')], Fmoc-3-(2-naphthyl)alanine[$\mathrm{Nal}\left(2^{\prime}\right)$], F moc-3-(2-naphthyl)-d-alanine[DNal(2')], F moc-3,3-diphenyl-alanine (Dip), and Fmoc-d-3,3-diphenyl-alanine (DDip) were purchased from Peptides International (Louisville, KY). Fmoc-DTrp(Boc) was purchased from Advanced ChemTech. F moc-d-homo-phenylalanine (hDPhe), F moc-homo-phenylalanine (hPhe), F moc-3-(3-pyridinyl)al anine (3-Pal), and F moc-3-(4-pyridinyl)alanine (4-Pal) were purchased from Bachem (Torrance, CA). Fmoc-4-phenyl-phenylalanine (Bip), F moc-4-phenyl-d-phenylalanine (DBip), Fmoc-1,2,3,4-tetrahydroiso-quinoline-3-carboxylic adid (Tic), F moc-D-1,2,3,4-tetrahydroiso-quinoline-3-carboxylic acid (DTic), and F moc-4-iodo-D-phenylalanine ($\mathrm{p}-\mathrm{I}$-DPhe) were purchased from Synthetech (Albany, OR). F moc-ami no-tetrahydro-2-naphthyl carboxylic acid (Atc) was purchased from Pharma Core (High Point, NC). The coupling reagents 2-(1-H-benzotriazol-1-yl)-1,1,3,3-tetramethyIuronium hexafluorophosphate (HBTU) and 1-hydroxybenzotriazole (HOBt) were purchased from Peptides International. Glacial acetic acid (HOAc), dichloromethane (DCM), methanol (MeOH), acetonitrile (ACN), and anhydrous ethyl ether were purchased from Fisher (Fair Lawn, NJ). N,N-Dimethylformamide (DMF) was purchased from Burdick and Jackson (McGaw Park, IL). Trifluoroacetic acid (TFA), 1,3-dii sopropyIcarbodiimide(DIC), pyridine, piperidine, and acetic anhydride were purchased from Sigma (St. Louis, MO). N,N-Diisopropylethylamine (DIEA) and triisopropylsilane (Tis) were pur-
chased from Aldrich (Milwaukee, WI). All reagents and chemicals were ACS grade or better and were used without further purification.

The peptides were assembled on rink-amide-MBHA resin (0.44 mequiv/g substitution), purchased from Peptides International. The synthesis was performed using a 40 well Teflon reaction block with a course Teflon frit. Approximately 100 mg of resin (0.044 mmole) was added to each reaction block well. The resin was allowed to swell for 2 h in DMF and deprotected using 25% piperidine in DMF for 5 min followed by a $20 \mathrm{~min} 25 \%$ piperidine incubation at 450 rpms . A positive Kaiser ${ }^{42}$ test resulted indicating free amine groups on the resin. The growing peptide chain was added to the amideresin using the general amino acid cycle as follows: $500 \mu \mathrm{~L}$ DMF is added to each reaction well to "wet the frit", 3 -fold excess amino acid starting from the C terminus is added ($275 \mu \mathrm{~L}$ of 0.5 M amino acid solution containing 0.5 M HOBt in DMF) followed by the addition of $275 \mu \mathrm{~L}$ of 0.5 M DIC in DMF, and the reaction well volume is brought up to 3 mL using DMF. The coupling reaction is mixed for 1 hr at 450 rpms , fol lowed by emptying of the reaction block by positive nitrogen gas pressure. A second coupling reaction is performed by the addition of $500 \mu \mathrm{~L}$ of DMF to each reaction vessel, fol lowed by the addition of $275 \mu \mathrm{~L}$ of the respective amino acid (3-fold excess), $275 \mu \mathrm{~L}$ of 0.5 M HBTU, and $225 \mu \mathrm{~L}$ of 1 M DIEA. The reaction well volume is brought up to 3 mL with DMF and mixed at 450 rpm for 1 h . After the second coupling cycle, the reaction block is emptied and the $\mathrm{N} \alpha$-F moc-protected peptideresin is washed with DMF (4.5 mL , four times). $\mathrm{N} \alpha-\mathrm{Fmoc}$ deprotection is performed by the addition of 4 mL of 25% piperidine in DMF and mixed for 5 min at 450 rpms followed by a 20 min deprotection at 450 rpms . The reaction well is washed with DMF (4.5 mL , four times), and the next coupling cycle is performed as described above. Following $\mathrm{N} \alpha-\mathrm{Fmoc}$ deprotection of the final amino acid, acetylation of the $\mathrm{N} \alpha-$ amine was performed by addition of 2 mL of acetic anhydride, 1 mL of pyridine, and 1 mL of DMF to the reaction block wells and mixed for 30 min at 450 rpms . The acetylated peptide resin was washed with DCM (4 mL , five times) and dried thoroughly prior to cleavage from the resin. Deprotection of the amino acid side chains and cleavage of the acetylated-
peptide from the resin was performed by incubating the peptide-resin with 3 mL of cleavage cocktail (95\% TFA, 2.5\% water, and 2.5% Tis) for 3 h at 450 rpms . The cleavage product was emptied from the reaction block into a cleavage block containing 7 mL collection vials under positive nitrogen gas pressure. The resin was washed with 1.5 mL of cleavage cocktail for 5 min and 450 rpms and added to the previous cleavage solution. The peptides were transferred to preweighed 50 mL conical tubes and precipitated with cold ($4{ }^{\circ} \mathrm{C}$) anhydrous ethyl ether (up to 50 mL). The flocculent peptide was pelleted by centrifugation (Sorval Super T21 high-speed centrifuge using the swinging bucket rotor) at 4000 rpm for 5 min, the ether was decanted off, and the peptide was washed one time with cold anhydrous ethyl ether and again pelleted. The crude peptide was dried in vacuo for 48 h . The crude peptide yields ranged from 60 to 90% of the theoretical yields. A $15-30 \mathrm{mg}$ sample of crude peptide was purified by RP-HPLC using a Shimadzu chromatography system with a photodiode array detector and a semipreparative RP-HPLC C18 bonded silica column (Vydac 218TP1010, $1.0 \mathrm{~cm} \times 25 \mathrm{~cm}$) and lyophilized. The purified peptides were at least $>95 \%$ pure as determined by analytical RP-HPLC and had the correct molecular mass (University of Florida protein core facility), Table 2.

Cell Culture and Transfection. Briefly, HEK-293 cells were maintained in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal calf serum and seeded 1 day prior to transfection at 1 to 2×10^{6} cells $/ 100 \mathrm{~mm}$ dish. Melanocortin receptor DNA in the pCDNA ${ }_{3}$ expression vector ($20 \mu \mathrm{~g}$) was transfected using the calcium phosphate method. Stable receptor populations were generated using G418 selection (1 $\mathrm{mg} / \mathrm{mL}$) for subsequent bioassay analysis.

Functional Bioassay. HEK-293 cells stably expressing the melanocortin receptors were transfected with $4 \mu \mathrm{~g}$ of CRE/ β galactosidase reporter gene as previously described. ${ }^{16,28,43}$ Briefly, 5000-15000 post transfection cells were plated into 96 well Primera plates (Falcon) and incubated overnight. Forty-eight hours posttransfection, the cells were stimulated with $100 \mu \mathrm{~L}$ of peptide ($10^{-4}-10^{-12} \mathrm{M}$) or forskolin ($10^{-4} \mathrm{M}$) control in assay medium (DMEM containing $0.1 \mathrm{mg} / \mathrm{mL}$ BSA and 0.1 mM isobutylmethylxanthine) for 6 h . The assay media was aspirated, and $50 \mu \mathrm{~L}$ of Iysis buffer (250 mM Tris-HCl, pH 8.0 , and 0.1% Triton X-100) was added. The plates were stored at $-80^{\circ} \mathrm{C}$ overnight. The plates containing the cell lysates were thawed the following day. Aliquots of $10 \mu \mathrm{~L}$ were taken from each well and transferred to another 96 well plate for relative protein determination. To the cell lysate plates, $40 \mu \mathrm{~L}$ of phosphate-buffered saline with 0.5% BSA was added to each well. Subsequently, $150 \mu \mathrm{~L}$ of substrate buffer (60 mM sodium phosphate, 1 mM MgCl 2 , $10 \mathrm{mM} \mathrm{KCl}, 5 \mathrm{mM} \beta$-mercaptoethanol, and 200 mg ONPG) was added to each well, and the plates were incubated at $37{ }^{\circ} \mathrm{C}$. The sample absorbance, OD_{405}, was measured using a 96 well plate reader (M olecular Devices). The relative protein was determined by adding 200 $\mu \mathrm{L}$ of $1: 5$ dilution BioRad G250 protein dye:water to the 10 $\mu \mathrm{L}$ cell lysate sample taken previously, and the OD_{595} was measured on a 96 well plate reader (M olecular Devices). Data points were normalized both to the relative protein content and nonreceptor-dependent forskol in stimulation. The antagonistic properties of these compounds were evaluated by the ability of these ligands to competitively displace the MTII agonist (Bachem) in a dose-dependent manner, at up to $10 \mu \mathrm{M}$ concentrations. ${ }^{16} \mathrm{The} \mathrm{pA}_{2}\left(\mathrm{~K}_{\mathrm{i}}=-\log \mathrm{pA}_{2}\right)$ values were generated using the Schild analysis method. ${ }^{44}$

Data Analysis. EC_{50} and pA_{2} values represent the mean of duplicate experiments performed in quadruplet or more independent experiments. EC_{50} and pA_{2} estimates, and their associated standard errors, were determined by fitting the data to a nonlinear least-squares analysis using the PRISM program (v3.0, GraphPad Inc.). The results are not corrected for peptide content, although all of the peptides examined in this study were determined to have approximately equal peptide content as determined by using Beers Law.

Acknowledgment. This work has been supported by NIH Grant RO1-DK57080. C.H.-L. is a recipient of a Burroughs Wellcome fund Career Award in the Biomedical Sciences.

Supporting Information Available: Illustration of antagonist pharmacology at the mMC3 and mMC4 receptors. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Cone, R. D.; Lu, D.; Kopula, S.; Vage, D. I.; Klungland, H.; Boston, B.; Chen, W.; Orth, D. N.; Pouton, C.; Kesterson, R. A. The Melanocortin Receptors: Agonists, Antagonists, and the Hormonal Control of Pigmentation. Recent Prog. Horm. Res. 1996, 51, 287-318.
(2) Hruby, V. J .; Wilkes, B. C.; Hadley, M. E.; AI-Obeidi, F.; Sawyer, T. K.; Staples, D. J.; DeVaux, A.; Dym, O.; Castrucci, A. M.; Hintz, M. F.; Riehm, J. P.; Rao, K. R. $\alpha-M$ elanotropin: The Minimal Active Sequence in the Frog Skin Bioassay. J. Med. Chem. 1987, 30, 2126-2130.
(3) Castrucci, A. M. L.; Hadley, M. E.; Sawyer, T. K.; Wilkes, B. C.; AI-Obeidi, F.; Staples, D. J.; DeVaux, A. E.; Dym, O.; Hintz, M. F.; Riehm, J.; Rao, K. R.; Hruby, V. J. α-Melanotropin: The Minimal Active Sequence in the Lizard Skin Bioassay. Gen. Comput. Endocrinol. 1989, 73, 157-163.
(4) Haskell-Luevano, C.; Sawyer, T. K.; Hendrata, S.; North, C.; Panahinia, L.; Stum, M.; Staples, D. J.; Castrucci, A. M.; Hadley, M. E.; Hruby, V. J. Truncation Studies of α-Melanotropin Peptides Identifies Tripeptide Analogues Exhibiting Prolonged Agonist Bioactivity. Peptides 1996, 17, 995-1002.
(5) Lu, D.; Willard, D.; Patel, I. R.; K adwell, S.; Overton, L.; K ost, T.; Luther, M.; Chen, W.; Yowchik, R. P.; Wilkison, W. O.; Cone, R. D. Agouti Protein is an Antagonist of the Melanocyte-Stimulating-H ormone Receptor. Nature 1994, 371, 799-802.
(6) Shutter, J. R.; Graham, M.; Kinsey, A. C.; Scully, S.; Lüthy, R.; Stark, K. L. Hypothalamic Expression of ART, a Novel Gene Related to Agouti, is Up-Regulated in Obese and Diabetic Mutant Mice. Genes Dev. 1997, 11, 593-602.
(7) Ollmann, M. M.; Wilson, B. D.; Yang, Y.-K.; Kerns, J. A.; Chen, Y.; Gantz, I.; Barsh, G. S. Antagonism of Central Melanocortin Receptors in Vitro and in Vivo by Agouti-Related Protein. Science 1997, 278, 135-138.
(8) Chen, A. S.; Marsh, D. J.; Trumbauer, M. E.; Frazier, E. G.; Guan, X. M.; Yu, H.; Rosenblum, C. I.; Vongs, A.; Feng, Y.; Cao, L.; Metzger, J. M.; Strack, A. M.; Camacho, R. E.; Mellin, T. N.; Nunes, C. N.; Min, W.; Fisher, J.; Gopal-Truter, S.; Macl ntyre, D. E.; Chen, H. Y.; Van Der Ploeg, L. H. Inactivation of the Mouse Melanocortin-3 Receptor Results in Increased Fat Mass and Reduced Lean Body Mass. Nat. Genet. 2000, 26, 97-102.
(9) Butler, A. A.; Kesterson, R. A.; Khong, K.; Cullen, M. J.; Pelleymounter, M. A.; Dekoning, J .; Baetscher, M.; Cone, R. D. A Unique Metabolic Syndrome Causes Obesity in the Melano-cortin-3 Receptor-deficient Mouse. Endocrinology 2000, 141, 3518-3521.
(10) Huszar, D.; Lynch, C. A.; Fairchild-Huntress, V.; Dunmore, J. H.; Smith, F. J.; Kesterson, R. A.; Boston, B. A.; Fang, Q.; Berkemeir, L. R.; Gu, W.; Cone, R. D.; Campfield, L. A.; Lee, F. Targeted Disruption of the Melanocortin-4 Receptor Results in Obesity in Mice. Cel 1997, 88, 131-141.
(11) Hruby, V. J .; Wilkes, B. C.; Cody, W. L.; Sawyer, T. K.; Hadley, M. E. Melanotropins: Structural, Conformational and Biological Considerations in the Development of Superpotent and Superprolonged Analogues. Pept. Protein Rev. 1984, 3, 1-64.
(12) Mountjoy, K. G.; Robbins, L. S.; M ortrud, M. T.; Cone, R. D. The Cloning of a Family of Genes that Encode the Melanocortin Receptors. Science 1992, 257, 1248-1251.
(13) Lu, D.; Väge, D. I.; Cone, R. D. A Ligand-Mimetic Model for Constitutive Activation of the Melanocortin-1 Receptor. Mol. Endocrinol. 1998, 12, 592-604.
(14) Chen, W.; Kelly, M. A.; Opitz-Araya, X.; Thomas, R. E.; Low, M. J.; Cone, R. D. Exocrine Gland Dysfunction In MC5-R Deficient Mice: Evidence For Coordinated Regulation Of Exocrine Gland Functions By Melanocortin Peptides. Cell 1997, 91, 789-798.
(15) Hruby, V. J.; Lu, D.; Sharma, S. D.; Castrucci, A. M. L.; Kesterson, R. A.; Al-Obeidi, F. A.; Hadley, M. E.; Cone, R. D. Cyclic Lactam α-Melanotropin Analogues of $\mathrm{Ac}-\mathrm{Nle}^{4}$-c[Asp ${ }^{5}$, DPhe ${ }^{7}$, Lys ${ }^{10}$]- $\alpha-\mathrm{MSH}(4-10)-\mathrm{NH}_{2}$ With Bulky Aromatic Amino Acids at Position 7 Show High Antagonist Potency and Selectivity at Specific Melanocortin Receptors. J. Med. Chem. 1995, 38, 3454-3461.
(16) Haskell-Luevano, C.; Cone, R. D.; Monck, E. K.; Wan, Y.-P. Structure Activity Studies of the Melanocortin-4 Receptor by In Vitro Mutagenesis: Identification of Agouti-Related Protein (AGRP), M elanocortin Agonist and Synthetic Peptide Antagonist Interaction Determinants. Biochemi stry 2001, 40, 61646179.
(17) Fan, W.; Boston, B. A.; Kesterson, R. A.; Hruby, V. J.; Cone, R. D. Role of Melanocortinergic Neurons in Feeding and the agouti Obesity Syndrome. Nature 1997, 385, 165-168.
(18) Kask, A.; Mutulis, F.; Muceniece, R.; Pahkla, R.; Mutule, I.; Wikberg, J. E.; Rago, L.; Schioth, H. B. Discovery of a Novel Superpotent and Selective Melanocortin-4 Receptor Antagonist (HSO24): Evaluation in vitro and in vivo. Endocrinology 1998, 139, 5006-5014.
(19) Kask, A.; Rago, L.; K orrovits, P.; Wikberg, J. E.; Schioth, H. B. Evidence that Orexigenic Effects of Melanocortin 4 Receptor Antagonist HS014 are Mediated by Neuropeptide Y. Biochem. Biophys. Res. Commun. 1998, 248, 245-249.
(20) Skuladottir, G. V.; J onsson, L.; Skarphedinsson, J . O.; Mutulis, F.; Muceniece, R.; Raine, A.; Mutule, I.; Helgason, J.; Prusis, P.; Wikberg, J. E.; Schioth, H. B. Long-Term Orexigenic Effect of a Novel M elanocortin 4 Receptor Selective Antagonist. Br. J. Pharmacol. 1999, 126, 27-34.
(21) Bednarek, M. A.; MacNeil, T.; K alyani, R. N.; Tang, R.; Van Der Ploeg, L. H.; Weinberg, D. H. Selective, High Affinity Peptide Antagonists of a-Melanotropin Action at Human Melanocortin Receptor 4: Their Synthesis and Biological Evaluation in Vitro. J. Med. Chem. 2001, 44, 3665-3672.
(22) Haskell-Luevano, C.; Lim, S.; Yuan, W.; Cone, R. D.; Hruby, V. J. Structure Activity Studies of the Melanocortin Antagonist SHU9119 M odified at the 6, 7, 8, and 9 Positions. Peptides 2000, 21, 49-57.
(23) Benoit, S. C.; Schwartz, M. W.; Lachey, J. L.; Hagan, M. M.; Rushing, P. A.; Blake, K. A.; Yagaloff, K. A.; Kurylko, G.; Franco, L.; Danhoo, W.; Seeley, R. J. A Novel Selective Melanocortin-4 Receptor Agonist Reduces Food Intake in Rats and Mice Without Producing Aversive Consequences. J. Neurosci. 2000, 20, 34423448.
(24) Haskell-Luevano, C.; Sawyer, T. K.; Trumpp-Kallmeyer, S.; Bikker, J.; Humblet, C.; Gantz, I.; Hruby, V. J. ThreeDimensional Molecular Models of the hMC1R Melanocortin Receptor: Complexes with Melanotropin Peptide Agonists. Drug Des. Discovery 1996, 14, 197-211.
(25) Yang, Y.-K.; Dickinson, C.; Haskell-Luevano, C.; Gantz, I. M olecular Basis for the Interaction of [$\mathrm{NIE},^{4}$ DPhe ${ }^{7}$] M elanocyte Stimulating Hormone with the Human Melanocortin-1 Receptor (Melanocyte $\alpha-M S H$ Receptor). J. Biol. Chem. 1997, 272, 2300023010.
(26) Yang, Y.; Fong, T. M.; Dickinson, C. J.; Mao, C.; Li, J. Y.; Tota, M. R.; Mosley, R.; Van Der Ploeg, L. H.; Gantz, I. M olecular Determinants of Ligand Binding to the Human Melanocortin-4 Receptor. Biochemistry 2000, 39, 14900-14911.
(27) Haskell-Luevano, C. In vitro Mutagenesis Studies of Melanocortin Receptor Coupling and Ligand Binding. In The Melanocortin Receptors; Cone, R. D., Ed.; The Humana Press Inc.: New J ersey, 2000; pp 263-306.
(28) Haskell-Luevano, C.; Holder, J. R.; Monck, E. K.; Bauzo, R. M. Characterization of Melanocortin NDP-MSH Agonist Peptide Fragments at the Mouse Central and Peripheral Melanocortin Receptors. J. Med. Chem. 2001, 44, 2247-2252.
(29) Chhajlani, V.; Wikberg, J. E. S. M olecular Cloning and Expression of the Human M elanocyte Stimulating Hormone Receptor cDNA. FEBS Lett. 1992, 309, 417-420.
(30) Roselli-Rehfuss, L.; Mountjoy, K. G.; Robbins, L. S.; Mortrud, M. T.; Low, M. J.; Tatro, J . B.; Entwistle, M. L.; Simerly, R. B.; Cone, R. D. Identification of a Receptor for γ Melanotropin and Other Proopiomelanocortin Peptides in the Hypothalamus and Limbic System. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 88568860.
(31) Gantz, I.; K onda, Y.; Tashiro, T.; Shimoto, Y.; Miwa, H.; Munzert, G.; Watson, S. J.; DelValle, J .; Y amada, T. Molecular Cloning of a Novel Melanocortin Receptor. J. Biol. Chem. 1993, 268, 8246-8250.
(32) Bednarek, M. A.; MacNeil, T.; Kalyani, R. N.; Tang, R.; Van der Ploeg, L. H.; Weinberg, D. H. Analogues of Lactam Derivatives of α-melanotropin with Basic and Acidic Residues. Biochem. Biophys. Res. Commun. 2000, 272, 23-28.
(33) Bednarek, M. A.; Silva, M. V.; Arison, B.; MacNeil, T.; Kalyani, R. N.; Huang, R. R.; Weinberg, D. H. Structure-Function Studies on the Cyclic Peptide MT-II, Lactam Derivative of α-melanotropin. Peptides 1999, 20, 401-409.
(34) Mergen, M.; Mergen, H.; Ozata, M.; Oner, R.; Oner, C. Rapid Communication: A Novel Melanocortin 4 Receptor (MC4R) Gene Mutation Associated with Morbid Obesity. J . Clin. Endocrinol. Metab. 2001, 86, 3448-3451.
(35) Vaisse, C.; Clement, K.; Guy-Grand, B.; Froguel, P. A Frameshift Mutation In Human MC4R Is Associated With A Dominant Form of Obesity. Nat. Genet. 1998, 20, 113-114.
(36) Vaisse, C.; Clement, K.; Durand, E.; Hercberg, S.; Guy-Grand, B.; Froguel, P. Melanocortin-4 Receptor Mutations are a Frequent and Heterogeneous Cause of Morbid Obesity. J. Clin. Invest. 2000, 106, 253-262.
(37) Farooqi, I. S.; Yeo, G. S.; Keogh, J. M.; Aminian, S.; J ebb, S. A.; Butler, G.; Cheetham, T.; O'Rahilly, S. Dominant and Recessive Inheritance of Morbid Obesity Associated with Melanocortin 4 Receptor Deficiency. J. Clin. Invest. 2000, 106, 271-279.
(38) Sina, M.; Hinney, A.; Ziegler, A.; Neupert, T.; Mayer, H.; Siegfried, W.; Blum, W. F.; Remschmidt, H.; Hebebrand, J. Phenotypes in Three Pedigrees with Autosomal Dominant Obesity Caused by Haploinsufficiency Mutations in the Mel-anocortin-4 Receptor Gene. Am. J. Hum. Genet. 1999, 65, 15011507.
(39) Hinney, A.; Schmidt, A.; Nottebom, K.; Heibult, O.; Becker, I.; Ziegler, A.; Gerber, G.; Sina, M.; Gorg, T.; Mayer, H.; Siegfried, W.; Fichter, M.; Remschmidt, H.; Hebebrand, J. Several Mutations in the Melanocortin-4 Receptor Gene Including a Nonsense and a Frameshift Mutation Associated with Dominantly Inherited Obesity in Humans. J. Clin. Endocrinol. Metab. 1999, 84, 1483-1486.
(40) Gantz, I.; Shimoto, Y.; K onda, Y.; Miwa, H.; Dickinson, C. J .; Yamada, T. Molecular Cloning, Expression, and Characterization of a Fifth Melanocortin Receptor. Biochem. Biophys. Res. Commun. 1994, 200, 1214-1220.
(41) Stewart, J. M.; Young, J . D. Solid-Phase PeptideSynthesis, 2nd ed.; Pierce Chemical Co.: Rockford, IL, 1984.
(42) Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I. Color Test for Detection of Free Terminal Amino Groups in the SolidPhase Synthesis of Peptides. Anal. Biochem. 1970, 34, 595-598.
(43) Chen, W.; Shields, T. S.; Stork, P. J. S.; Cone, R. D. A Colorimetric Assay for Measuring Activation of Gs- and GqCoupled Signaling Pathways. Anal. Biochem. 1995, 226, 349354.
(44) Schild, H. O. pA, A New Scale for the Measurement of Drug Antagonism. Br. J. Pharmacol. 1947, 2, 189-206.
J M 010524 P

[^0]: * To whom correspondence should be addressed. Tel.: (352)8462722. Fax: (352)392-8182. E-mail: Carrie@cop.ufl.edu.

[^1]: peptide values have been previously reported ${ }^{28}$ and are included herein for reference purposes.

